
NAG C Library Function Document

nag_dsbevd (f08hcc)

1 Purpose

nag_dsbevd (f08hcc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric
band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dsbevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, Integer kd, double ab[], Integer pdab, double w[], double z[],
Integer pdz, NagError *fail)

3 Description

nag_dsbevd (f08hcc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric
band matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZT,

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi, i ¼ 1; 2; . . . ; n.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType Input

On entry: indicates whether eigenvectors are computed.

job ¼ Nag_DoNothing

Only eigenvalues are computed.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08hcc

[NP3660/8] f08hcc.1

job ¼ Nag_EigVecs

Eigenvalues and eigenvectors are computed.

Constraint: job ¼ Nag_DoNothing or Nag_EigVecs.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored.

uplo ¼ Nag_Upper

The upper triangular part of A is stored.

uplo ¼ Nag_Lower

The lower triangular part of A is stored.

Constraint: uplo ¼ Nag_Upper or Nag_Lower.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: kd – Integer Input

On entry: if uplo ¼ Nag_Upper, the number of superdiagonals, k, of the matrix A.

If uplo ¼ Nag_Lower, the number of subdiagonals.

Constraint: kd � 0.

6: ab½dim� – double Input/Output

Note: the dimension, dim, of the array ab must be at least max 1; pdab� nð Þ.
On entry: the n by n symmetric band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. Just the upper or lower triangular part
of the array is held depending on the value of uplo. The storage of elements aij depends on the
order and uplo arguments as follows:

if order ¼ Nag_ColMajor and uplo ¼ Nag_Upper,
aij is stored in ab½k þ i� jþ j� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and
j ¼ i; . . . ;min n; iþ kð Þ;

if order ¼ Nag_ColMajor and uplo ¼ Nag_Lower,
aij is stored in ab½i� jþ j� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and j ¼ max 1; i� kð Þ; . . . ; i
;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Upper,
aij is stored in ab½j� iþ i� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and j ¼ i; . . . ;min n; iþ kð Þ;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Lower,
aij is stored in ab½k þ j� iþ i� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and
j ¼ max 1; i� kð Þ; . . . ; i.

On exit: A is overwritten by the values generated during the reduction to tridiagonal form. The
storage details depend on the input values of the arguments order and uplo.

7: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � kdþ 1.

8: w½dim� – double Output

Note: the dimension, dim, of the array w must be at least max 1; nð Þ.

f08hcc NAG C Library Manual

f08hcc.2 [NP3660/8]

On exit: the eigenvalues of the matrix A in ascending order.

9: z½dim� – double Output

Note: the dimension, dim, of the array z must be at least

max 1; pdz� nð Þ when job ¼ Nag_EigVecs;
1 when job ¼ Nag_DoNothing.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix Z is stored in z½ j� 1ð Þ � pdzþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix Z is stored in z½ i� 1ð Þ � pdzþ j� 1�.
On exit: if job ¼ Nag_EigVecs, z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the
eigenvalue w½i�.
If job ¼ Nag_DoNothing, z is not referenced.

10: pdz – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

The algorithm failed to converge, valueh i elements of an intermediate tridiagonal form did not
converge to zero.

NE_ENUM_INT_2

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_DoNothing, pdz � 1.

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ.
On entry, pdz ¼ valueh i, job ¼ valueh i, n ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

NE_INT

On entry, kd ¼ valueh i.
Constraint: kd � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08hcc

[NP3660/8] f08hcc.3

On entry, pdab ¼ valueh i.
Constraint: pdab > 0.

On entry, pdz ¼ valueh i.
Constraint: pdz > 0.

NE_INT_2

On entry, pdab ¼ valueh i, kd ¼ valueh i.
Constraint: pdab � kdþ 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2,

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Further Comments

The complex analogue of this function is nag_zhbevd (f08hqc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric band matrix A, where

A ¼

1 2 3 0 0
2 2 3 4 0
3 3 3 4 5
0 4 4 4 5
0 0 5 5 5

0
BBBB@

1
CCCCA
.

9.1 Program Text

/* nag_dsbevd (f08hcc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, k, kd, n, pdab, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char[2];
double *ab=0, *w=0, *z=0;

f08hcc NAG C Library Manual

f08hcc.4 [NP3660/8]

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("nag_dsbevd (f08hcc) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &n, &kd);
pdab = kd + 1;
pdz = n;
w_len = n;

/* Allocate memory */
if (!(ab = NAG_ALLOC(pdab * n, double)) ||

!(w = NAG_ALLOC(w_len, double)) ||
!(z = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read whether Upper or Lower part of A is stored */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
k = kd + 1;
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= MIN(i+kd,n); ++j)

Vscanf("%lf", &AB_UPPER(i,j));
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = MAX(1,i-kd); j <= i; ++j)
Vscanf("%lf", &AB_LOWER(i,j));

}
Vscanf("%*[^\n] ");

}
/* Read type of job to be performed */
Vscanf(" ’ %1s ’%*[^\n] ", job_char);
if (*(unsigned char *)job_char == ’V’)

job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A */
/* nag_dsbevd (f08hcc).
* All eigenvalues and optionally all eigenvectors of real
* symmetric band matrix (divide-and-conquer)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08hcc

[NP3660/8] f08hcc.5

*/
nag_dsbevd(order, job, uplo, n, kd, ab, pdab, w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dsbevd (f08hcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf(" Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4lf", w[i]);
Vprintf("\n\n");
/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/

nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Eigenvectors", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
END:
if (ab) NAG_FREE(ab);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);
return exit_status;

}

9.2 Program Data

nag_dsbevd (f08hcc) Example Program Data
5 2 :Values of N and KD
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0

4.0 4.0 4.0
5.0 5.0 5.0 :End of matrix A

’V’ :Value of JOB

9.3 Program Results

nag_dsbevd (f08hcc) Example Program Results

Eigenvalues
-3.2474 -2.6633 1.7511 4.1599 14.9997

Eigenvectors

1 2 3 4 5
1 0.0394 -0.6238 -0.5635 0.5165 0.1582
2 0.5721 0.2575 0.3896 0.5955 0.3161
3 -0.4372 0.5900 -0.4008 0.1470 0.5277
4 -0.4424 -0.4308 0.5581 -0.0470 0.5523
5 0.5332 -0.1039 -0.2421 -0.5956 0.5400

f08hcc NAG C Library Manual

f08hcc.6 (last) [NP3660/8]

	f08hcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	job
	uplo
	n
	kd
	ab
	pdab
	w
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_ENUM_INT_2
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

