
NAG C Library Function Document

nag_dsbevd (f08hcc)

1 Purpose

nag_dsbevd (f08hcc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric
band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dsbevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, Integer kd, double ab[], Integer pdab, double w[], double z[],
Integer pdz, NagError *fail)

3 Description

nag_dsbevd (f08hcc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric
band matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZT,

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi, i ¼ 1; 2; . . . ; n.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType Input

On entry: indicates whether eigenvectors are computed.

job ¼ Nag_DoNothing

Only eigenvalues are computed.
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job ¼ Nag_EigVecs

Eigenvalues and eigenvectors are computed.

Constraint: job ¼ Nag_DoNothing or Nag_EigVecs.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored.

uplo ¼ Nag_Upper

The upper triangular part of A is stored.

uplo ¼ Nag_Lower

The lower triangular part of A is stored.

Constraint: uplo ¼ Nag_Upper or Nag_Lower.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: kd – Integer Input

On entry: if uplo ¼ Nag_Upper, the number of superdiagonals, k, of the matrix A.

If uplo ¼ Nag_Lower, the number of subdiagonals.

Constraint: kd � 0.

6: ab½dim� – double Input/Output

Note: the dimension, dim, of the array ab must be at least max 1; pdab� nð Þ.
On entry: the n by n symmetric band matrix A. This is stored as a notional two-dimensional array
with row elements or column elements stored contiguously. Just the upper or lower triangular part
of the array is held depending on the value of uplo. The storage of elements aij depends on the
order and uplo arguments as follows:

if order ¼ Nag_ColMajor and uplo ¼ Nag_Upper,
aij is stored in ab½k þ i� jþ j� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and
j ¼ i; . . . ;min n; iþ kð Þ;

if order ¼ Nag_ColMajor and uplo ¼ Nag_Lower,
aij is stored in ab½i� jþ j� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and j ¼ max 1; i� kð Þ; . . . ; i
;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Upper,
aij is stored in ab½j� iþ i� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and j ¼ i; . . . ;min n; iþ kð Þ;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Lower,
aij is stored in ab½k þ j� iþ i� 1ð Þ � pdab�, for i ¼ 1; . . . ; n and
j ¼ max 1; i� kð Þ; . . . ; i.

On exit: A is overwritten by the values generated during the reduction to tridiagonal form. The
storage details depend on the input values of the arguments order and uplo.

7: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � kdþ 1.

8: w½dim� – double Output

Note: the dimension, dim, of the array w must be at least max 1; nð Þ.
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On exit: the eigenvalues of the matrix A in ascending order.

9: z½dim� – double Output

Note: the dimension, dim, of the array z must be at least

max 1; pdz� nð Þ when job ¼ Nag_EigVecs;
1 when job ¼ Nag_DoNothing.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix Z is stored in z½ j� 1ð Þ � pdzþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix Z is stored in z½ i� 1ð Þ � pdzþ j� 1�.
On exit: if job ¼ Nag_EigVecs, z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the
eigenvalue w½i�.
If job ¼ Nag_DoNothing, z is not referenced.

10: pdz – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

The algorithm failed to converge, valueh i elements of an intermediate tridiagonal form did not
converge to zero.

NE_ENUM_INT_2

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_DoNothing, pdz � 1.

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ.
On entry, pdz ¼ valueh i, job ¼ valueh i, n ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

NE_INT

On entry, kd ¼ valueh i.
Constraint: kd � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.
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On entry, pdab ¼ valueh i.
Constraint: pdab > 0.

On entry, pdz ¼ valueh i.
Constraint: pdz > 0.

NE_INT_2

On entry, pdab ¼ valueh i, kd ¼ valueh i.
Constraint: pdab � kdþ 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2,

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Further Comments

The complex analogue of this function is nag_zhbevd (f08hqc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric band matrix A, where

A ¼

1 2 3 0 0
2 2 3 4 0
3 3 3 4 5
0 4 4 4 5
0 0 5 5 5

0
BBBB@

1
CCCCA
.

9.1 Program Text

/* nag_dsbevd (f08hcc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, k, kd, n, pdab, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char[2];
double *ab=0, *w=0, *z=0;
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#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("nag_dsbevd (f08hcc) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &n, &kd);
pdab = kd + 1;
pdz = n;
w_len = n;

/* Allocate memory */
if ( !(ab = NAG_ALLOC(pdab * n, double)) ||

!(w = NAG_ALLOC(w_len, double)) ||
!(z = NAG_ALLOC(n * n, double)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read whether Upper or Lower part of A is stored */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
k = kd + 1;
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= MIN(i+kd,n); ++j)

Vscanf("%lf", &AB_UPPER(i,j));
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = MAX(1,i-kd); j <= i; ++j)
Vscanf("%lf", &AB_LOWER(i,j));

}
Vscanf("%*[^\n] ");

}
/* Read type of job to be performed */
Vscanf(" ’ %1s ’%*[^\n] ", job_char);
if (*(unsigned char *)job_char == ’V’)

job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A */
/* nag_dsbevd (f08hcc).
* All eigenvalues and optionally all eigenvectors of real
* symmetric band matrix (divide-and-conquer)
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*/
nag_dsbevd(order, job, uplo, n, kd, ab, pdab, w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dsbevd (f08hcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf(" Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4lf", w[i]);
Vprintf("\n\n");
/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/

nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Eigenvectors", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
END:
if (ab) NAG_FREE(ab);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);
return exit_status;

}

9.2 Program Data

nag_dsbevd (f08hcc) Example Program Data
5 2 :Values of N and KD
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0

4.0 4.0 4.0
5.0 5.0 5.0 :End of matrix A

’V’ :Value of JOB

9.3 Program Results

nag_dsbevd (f08hcc) Example Program Results

Eigenvalues
-3.2474 -2.6633 1.7511 4.1599 14.9997

Eigenvectors

1 2 3 4 5
1 0.0394 -0.6238 -0.5635 0.5165 0.1582
2 0.5721 0.2575 0.3896 0.5955 0.3161
3 -0.4372 0.5900 -0.4008 0.1470 0.5277
4 -0.4424 -0.4308 0.5581 -0.0470 0.5523
5 0.5332 -0.1039 -0.2421 -0.5956 0.5400
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